KT24-1110_65E-HA-651B/cpu/br25/uart_test.c

175 lines
5.4 KiB
C
Raw Normal View History

2024-11-10 10:44:17 +00:00
#include "system/includes.h"
#include "asm/uart_dev.h"
#if 0
/*
[[ !!! ]]
* 使demo#define TCFG_LOWPOWER_LOWPOWER_SEL 0//SLEEP_EN 否则任务被串口接收函数调用信号量pend时会导致cpu休眠串口中断和DMA接收将遗漏数据或数据不正确
*/
#define UART_DEV_USAGE_TEST_SEL 2 //uart_dev.c api接口使用方法选择
// 选择1 串口中断回调函数推送事件,由事件响应函数接收串口数据
// 选择2 由task接收串口数据
#define UART_DEV_TEST_MULTI_BYTE 1 //uart_dev.c 读写多个字节api / 读写1个字节api 选择
static u8 uart_cbuf[512] __attribute__((aligned(4)));
static u8 uart_rxbuf[512] __attribute__((aligned(4)));
static void my_put_u8hex(u8 dat)
{
u8 tmp;
tmp = dat / 16;
if (tmp < 10) {
putchar(tmp + '0');
} else {
putchar(tmp - 10 + 'A');
}
tmp = dat % 16;
if (tmp < 10) {
putchar(tmp + '0');
} else {
putchar(tmp - 10 + 'A');
}
putchar(0x20);
}
//设备事件响应demo
static void uart_event_handler(struct sys_event *e)
{
const uart_bus_t *uart_bus;
u32 uart_rxcnt = 0;
if (!strcmp(e->arg, "uart_rx_overflow")) {
if (e->u.dev.event == DEVICE_EVENT_CHANGE) {
printf("uart event: %s\n", e->arg);
uart_bus = (const uart_bus_t *)e->u.dev.value;
uart_rxcnt = uart_bus->read(uart_rxbuf, sizeof(uart_rxbuf), 0);
if (uart_rxcnt) {
printf("get_buffer:\n");
for (int i = 0; i < uart_rxcnt; i++) {
my_put_u8hex(uart_rxbuf[i]);
if (i % 16 == 15) {
putchar('\n');
}
}
if (uart_rxcnt % 16) {
putchar('\n');
}
uart_bus->write(uart_rxbuf, uart_rxcnt);
}
printf("uart out\n");
}
}
if (!strcmp(e->arg, "uart_rx_outtime")) {
if (e->u.dev.event == DEVICE_EVENT_CHANGE) {
printf("uart event: %s\n", e->arg);
uart_bus = (const uart_bus_t *)e->u.dev.value;
uart_rxcnt = uart_bus->read(uart_rxbuf, sizeof(uart_rxbuf), 0);
if (uart_rxcnt) {
printf("get_buffer:\n");
for (int i = 0; i < uart_rxcnt; i++) {
my_put_u8hex(uart_rxbuf[i]);
if (i % 16 == 15) {
putchar('\n');
}
}
if (uart_rxcnt % 16) {
putchar('\n');
}
uart_bus->write(uart_rxbuf, uart_rxcnt);
}
printf("uart out\n");
}
}
}
SYS_EVENT_HANDLER(SYS_DEVICE_EVENT, uart_event_handler, 0);
static void uart_u_task(void *arg)
{
const uart_bus_t *uart_bus = arg;
int ret;
u32 uart_rxcnt = 0;
printf("uart_u_task start\n");
while (1) {
#if !UART_DEV_TEST_MULTI_BYTE
//uart_bus->getbyte()在尚未收到串口数据时会pend信号量挂起task直到UART_RX_PND或UART_RX_OT_PND中断发生post信号量唤醒task
ret = uart_bus->getbyte(&uart_rxbuf[0], 0);
if (ret) {
uart_rxcnt = 1;
printf("get_byte: %02x\n", uart_rxbuf[0]);
uart_bus->putbyte(uart_rxbuf[0]);
}
#else
//uart_bus->read()在尚未收到串口数据时会pend信号量挂起task直到UART_RX_PND或UART_RX_OT_PND中断发生post信号量唤醒task
uart_rxcnt = uart_bus->read(uart_rxbuf, sizeof(uart_rxbuf), 0);
if (uart_rxcnt) {
printf("get_buffer:\n");
for (int i = 0; i < uart_rxcnt; i++) {
my_put_u8hex(uart_rxbuf[i]);
if (i % 16 == 15) {
putchar('\n');
}
}
if (uart_rxcnt % 16) {
putchar('\n');
}
uart_bus->write(uart_rxbuf, uart_rxcnt);
}
#endif
}
}
static void uart_isr_hook(void *arg, u32 status)
{
const uart_bus_t *ubus = arg;
struct sys_event e;
//当CONFIG_UARTx_ENABLE_TX_DMAx = 0, 1为1时不要在中断里面调用ubus->write()因为中断不能pend信号量
if (status == UT_RX) {
printf("uart_rx_isr\n");
#if (UART_DEV_USAGE_TEST_SEL == 1)
e.type = SYS_DEVICE_EVENT;
e.arg = "uart_rx_overflow";
e.u.dev.event = DEVICE_EVENT_CHANGE;
e.u.dev.value = (int)ubus;
sys_event_notify(&e);
#endif
}
if (status == UT_RX_OT) {
printf("uart_rx_ot_isr\n");
#if (UART_DEV_USAGE_TEST_SEL == 1)
e.type = SYS_DEVICE_EVENT;
e.arg = "uart_rx_outtime";
e.u.dev.event = DEVICE_EVENT_CHANGE;
e.u.dev.value = (int)ubus;
sys_event_notify(&e);
#endif
}
}
void uart_dev_test_main()
{
const uart_bus_t *uart_bus;
struct uart_platform_data_t u_arg = {0};
u_arg.tx_pin = IO_PORTA_01;
u_arg.rx_pin = IO_PORTA_02;
u_arg.rx_cbuf = uart_cbuf;
u_arg.rx_cbuf_size = 512;
u_arg.frame_length = 32;
u_arg.rx_timeout = 100;
u_arg.isr_cbfun = uart_isr_hook;
u_arg.baud = 9600;
u_arg.is_9bit = 0;
uart_bus = uart_dev_open(&u_arg);
if (uart_bus != NULL) {
printf("uart_dev_open() success\n");
#if (UART_DEV_USAGE_TEST_SEL == 2)
os_task_create(uart_u_task, (void *)uart_bus, 31, 512, 0, "uart_u_task");
#endif
}
}
#endif