/** * @file uart.c * @author JL * @brief 串口UART模块C文件 * @version 1.2 * @date 2018-11-22 */ #include "asm/clock.h" #include "asm/uart_dev.h" #include "asm/cpu.h" #include "generic/gpio.h" #include "spinlock.h" #include "update.h" #ifdef SUPPORT_MS_EXTENSIONS #pragma bss_seg(".uart_bss") #pragma data_seg(".uart_data") #pragma const_seg(".uart_const") #pragma code_seg(".uart_code") #endif #define UART_CLK clk_get("uart") #define UART_OT_CLK clk_get("lsb") static uart_bus_t uart0; static uart_bus_t uart1; static uart_bus_t uart2; /* _WEAK_ */ /* extern */ const u32 CONFIG_UART0_ENABLE = 1; /* _WEAK_ */ /* extern */ const u32 CONFIG_UART1_ENABLE = 1; /* _WEAK_ */ /* extern */ const u32 CONFIG_UART2_ENABLE = 1; /* _WEAK_ */ /* extern */ const u32 CONFIG_UART0_ENABLE_TX_DMA = 1; /* _WEAK_ */ /* extern */ const u32 CONFIG_UART1_ENABLE_TX_DMA = 1; /* _WEAK_ */ /* extern */ const u32 CONFIG_UART2_ENABLE_TX_DMA = 1; static u32 kfifo_get(KFIFO *kfifo, u8 *buffer, u32 len) { unsigned int i; len = MIN(len, kfifo->buf_in - kfifo->buf_out); i = MIN(len, kfifo->buf_size - (kfifo->buf_out & (kfifo->buf_size - 1))); memcpy(buffer, kfifo->buffer + (kfifo->buf_out & (kfifo->buf_size - 1)), i); memcpy(buffer + i, kfifo->buffer, len - i); kfifo->buf_out += len; return len; } static u32 kfifo_length(KFIFO *kfifo) { return kfifo->buf_in - kfifo->buf_out; } /** * @brief ut0发送一个byte * * @param a 要发送的字节 */ static void UT0_putbyte(char a) { if (JL_UART0->CON0 & BIT(0)) { JL_UART0->BUF = a; __asm__ volatile("csync"); while ((JL_UART0->CON0 & BIT(15)) == 0); JL_UART0->CON0 |= BIT(13); } } /** * @brief ut0接收一个byte * * @param buf 字节存放地址 * @param timeout 接收超时时间,单位1ms * @return 返回0:接收失败;返回1:接收成功 */ static u8 UT0_getbyte(u8 *buf, u32 timeout) { u32 _timeout, _t_sleep; timeout = ut_msecs_to_jiffies(timeout); if (JL_UART0->CON0 & BIT(6)) { //DMA_MODE if (!kfifo_length(&uart0.kfifo)) { UT_OSSemPend(&uart0.sem_rx, timeout); } UT_OSSemSet(&uart0.sem_rx, 0); return kfifo_get(&uart0.kfifo, buf, 1); } else { _timeout = timeout + ut_get_jiffies(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); while (!(JL_UART0->CON0 & BIT(14))) { if (timeout && time_before(_timeout, ut_get_jiffies())) { return 0; } if (time_before(_t_sleep, ut_get_jiffies())) { ut_sleep(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); } } *buf = JL_UART0->BUF; JL_UART0->CON0 |= BIT(12); __asm__ volatile("csync"); //make RX_PND_CLR taking effect } return 1; } /** * @brief ut0中断函数 */ SET_INTERRUPT static void UT0_isr_fun(void) { u32 rx_len = 0; if ((JL_UART0->CON0 & BIT(2)) && (JL_UART0->CON0 & BIT(15))) { JL_UART0->CON0 |= BIT(13); UT_OSSemPost(&uart0.sem_tx); if (uart0.isr_cbfun) { uart0.isr_cbfun(&uart0, UT_TX); } } if ((JL_UART0->CON0 & BIT(3)) && (JL_UART0->CON0 & BIT(14))) { JL_UART0->CON0 |= BIT(12); //清RX PND uart0.kfifo.buf_in += uart0.frame_length; //每满frame_length字节则产生一次中断 UT_OSSemPost(&uart0.sem_rx); if (uart0.isr_cbfun) { uart0.isr_cbfun(&uart0, UT_RX); } } if ((JL_UART0->CON0 & BIT(5)) && (JL_UART0->CON0 & BIT(11))) { //OTCNT PND JL_UART0->CON0 |= BIT(7); //DMA模式 JL_UART0->CON0 |= BIT(10); //清OTCNT PND JL_UART0->CON0 |= BIT(12); //清RX PND(这里的顺序不能改变,这里要清一次) rx_len = JL_UART0->HRXCNT; //读当前串口接收数据的个数 if (rx_len) { uart0.kfifo.buf_in += rx_len; /* printf("%s() %d\n", __func__, __LINE__); */ UT_OSSemPost(&uart0.sem_rx); if (uart0.isr_cbfun) { uart0.isr_cbfun(&uart0, UT_RX_OT); } } } } /** * @brief ut0接收字符串 * * @param buf 字符串存放首地址 * @param len 预接收长度 * @param timeout 接收超时时间,单位1ms * @return 返回实际接收长度 */ static u32 UT0_read_buf(u8 *buf, u32 len, u32 timeout) { u32 i; u32 _timeout, _t_sleep; if (len == 0) { return 0; } timeout = ut_msecs_to_jiffies(timeout); if (JL_UART0->CON0 & BIT(6)) { if (!kfifo_length(&uart0.kfifo)) { UT_OSSemPend(&uart0.sem_rx, timeout); } UT_OSSemSet(&uart0.sem_rx, 0); return kfifo_get(&uart0.kfifo, buf, len); } else { _timeout = timeout + ut_get_jiffies(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); for (i = 0; i < len; i++) { while (!(JL_UART0->CON0 & BIT(14))) { if (timeout && time_before(_timeout, ut_get_jiffies())) { return i; } if (time_before(_t_sleep, ut_get_jiffies())) { ut_sleep(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); } } *(buf + i) = JL_UART0->BUF; JL_UART0->CON0 |= BIT(12); __asm__ volatile("csync"); //make RX_PND_CLR taking effect } } return len; } /** * @brief ut0发送字符串 * * @param buf 字符串首地址 * @param len 发送的字符串长度 */ static void UT0_write_buf(const u8 *buf, u32 len) { u32 i; if (len == 0) { return; } if (CONFIG_UART0_ENABLE_TX_DMA) { UT_OSSemSet(&uart0.sem_tx, 0); JL_UART0->CON0 |= BIT(13); JL_UART0->CON0 |= BIT(2); JL_UART0->TXADR = (u32)buf; JL_UART0->TXCNT = len; UT_OSSemPend(&uart0.sem_tx, 0); JL_UART0->CON0 &= ~BIT(2); } else { for (i = 0; i < len; i ++) { UT0_putbyte(*(buf + i)); } } } /** * @brief ut0配置波特率 * * @param baud 波特率值 */ static void UT0_set_baud(u32 baud) { JL_UART0->CON0 &= ~BIT(0); JL_UART0->CON0 |= BIT(13) | BIT(12) | BIT(10); JL_UART0->BAUD = ((UART_CLK + baud / 2) / baud) / 4 - 1; if (JL_UART0->CON0 & BIT(5)) { if (uart0.rx_timeout > 10) { JL_UART0->OTCNT = (uart0.rx_timeout / 10) * (UART_OT_CLK / 10) / 10; } else { JL_UART0->OTCNT = uart0.rx_timeout * UART_OT_CLK / 1000; } } JL_UART0->CON0 |= BIT(13) | BIT(12) | BIT(10) | BIT(0); } /** * @brief ut0使能 */ static void UT0_open(u32 baud, u32 is_9bit, void *cbuf, u32 cbuf_size, u32 rx_cnt, u32 ot) { JL_UART0->CON0 = BIT(13) | BIT(12) | BIT(10); UT_OSSemCreate(&uart0.sem_rx, 0); UT_OSSemCreate(&uart0.sem_tx, 0); request_irq(IRQ_UART0_IDX, 3, UT0_isr_fun, 0); if (cbuf) { uart0.kfifo.buffer = cbuf; uart0.kfifo.buf_size = cbuf_size; uart0.kfifo.buf_in = 0; uart0.kfifo.buf_out = 0; uart0.frame_length = rx_cnt; uart0.rx_timeout = ot; JL_UART0->RXSADR = (u32)uart0.kfifo.buffer; JL_UART0->RXEADR = (u32)(uart0.kfifo.buffer + uart0.kfifo.buf_size); JL_UART0->RXCNT = uart0.frame_length; JL_UART0->CON0 |= BIT(6) | BIT(5) | BIT(3); } if (is_9bit) { JL_UART0->CON0 |= BIT(1); } else { JL_UART0->CON0 &= ~BIT(1); } UT0_set_baud(baud); } /** * @brief ut0关闭,注销 */ static void UT0_close(void) { UT_OSSemClose(&uart0.sem_rx); UT_OSSemClose(&uart0.sem_tx); irq_disable(IRQ_UART0_IDX); JL_UART0->CON0 = BIT(13) | BIT(12) | BIT(10); } /** * @brief ut1发送一个byte * * @param a 要发送的字节 */ static void UT1_putbyte(char a) { if (JL_UART1->CON0 & BIT(0)) { JL_UART1->BUF = a; __asm__ volatile("csync"); while ((JL_UART1->CON0 & BIT(15)) == 0); JL_UART1->CON0 |= BIT(13); } } /** * @brief ut1接收一个byte * * @param buf 字节存放地址 * @param timeout 接收超时时间,单位1ms 10ms¥;返回1:接收成功 */ static u8 UT1_getbyte(u8 *buf, u32 timeout) { u32 _timeout, _t_sleep; timeout = ut_msecs_to_jiffies(timeout); if (JL_UART1->CON0 & BIT(6)) { if (!kfifo_length(&uart1.kfifo)) { UT_OSSemPend(&uart1.sem_rx, timeout); } UT_OSSemSet(&uart1.sem_rx, 0); return kfifo_get(&uart1.kfifo, buf, 1); } else { _timeout = timeout + ut_get_jiffies(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); while (!(JL_UART1->CON0 & BIT(14))) { if (timeout && time_before(_timeout, ut_get_jiffies())) { return 0; } if (time_before(_t_sleep, ut_get_jiffies())) { ut_sleep(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); } } *buf = JL_UART1->BUF; JL_UART1->CON0 |= BIT(12); __asm__ volatile("csync"); //make RX_PND_CLR taking effect } return 1; } /** * @brief ut1中断函数 */ SET_INTERRUPT static void UT1_isr_fun(void) { u32 rx_len = 0; if ((JL_UART1->CON0 & BIT(2)) && (JL_UART1->CON0 & BIT(15))) { JL_UART1->CON0 |= BIT(13); UT_OSSemPost(&uart1.sem_tx); if (uart1.isr_cbfun) { uart1.isr_cbfun(&uart1, UT_TX); } } if ((JL_UART1->CON0 & BIT(3)) && (JL_UART1->CON0 & BIT(14))) { JL_UART1->CON0 |= BIT(12); //清RX PND uart1.kfifo.buf_in += uart1.frame_length; //每满32字节则产生一次中断 UT_OSSemPost(&uart1.sem_rx); if (uart1.isr_cbfun) { uart1.isr_cbfun(&uart1, UT_RX); } } if ((JL_UART1->CON0 & BIT(5)) && (JL_UART1->CON0 & BIT(11))) { //OTCNT PND JL_UART1->CON0 |= BIT(7); //DMA模式 JL_UART1->CON0 |= BIT(10); //清OTCNT PND JL_UART1->CON0 |= BIT(12); //清RX PND(这里的顺序不能改变,这里要清一次) rx_len = JL_UART1->HRXCNT; //读当前串口接收数据的个数 if (rx_len) { uart1.kfifo.buf_in += rx_len; /* printf("%s() %d\n", __func__, __LINE__); */ UT_OSSemPost(&uart1.sem_rx); if (uart1.isr_cbfun) { uart1.isr_cbfun(&uart1, UT_RX_OT); } } } } /** * @brief ut1接收字符串 * * @param buf 字符串存放首地址 * @param len 预接收长度 * @param timeout 接收超时时间,单位1ms * @return 返回实际接收的长度 */ static u32 UT1_read_buf(u8 *buf, u32 len, u32 timeout) { u32 i; u32 _timeout, _t_sleep; if (len == 0) { return 0; } timeout = ut_msecs_to_jiffies(timeout); if (JL_UART1->CON0 & BIT(6)) { if (!kfifo_length(&uart1.kfifo)) { UT_OSSemPend(&uart1.sem_rx, timeout); } UT_OSSemSet(&uart1.sem_rx, 0); return kfifo_get(&uart1.kfifo, buf, len); } else { _timeout = timeout + ut_get_jiffies(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); for (i = 0; i < len; i++) { while (!(JL_UART1->CON0 & BIT(14))) { if (timeout && time_before(_timeout, ut_get_jiffies())) { return i; } if (time_before(_t_sleep, ut_get_jiffies())) { ut_sleep(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); } } *(buf + i) = JL_UART1->BUF; JL_UART1->CON0 |= BIT(12); __asm__ volatile("csync"); //make RX_PND_CLR taking effect } } return len; } /** * @brief ut1发送字符串 * * @param buf 字符串首地址 * @param len 发送的字符串长度 * @param timeout 发送超时时间,单位10ms */ static void UT1_write_buf(const u8 *buf, u32 len) { u32 i; if (len == 0) { return; } if (CONFIG_UART1_ENABLE_TX_DMA) { UT_OSSemSet(&uart1.sem_tx, 0); JL_UART1->CON0 |= BIT(13); JL_UART1->CON0 |= BIT(2); JL_UART1->TXADR = (u32)buf; JL_UART1->TXCNT = len; UT_OSSemPend(&uart1.sem_tx, 0); JL_UART1->CON0 &= ~BIT(2); } else { for (i = 0; i < len; i ++) { UT1_putbyte(*(buf + i)); } } } /** * @brief ut1配置波特率 * * @param baud 波特率值 */ static void UT1_set_baud(u32 baud) { JL_UART1->CON0 &= ~BIT(0); JL_UART1->CON0 |= BIT(13) | BIT(12) | BIT(10); JL_UART1->BAUD = ((UART_CLK + baud / 2) / baud) / 4 - 1; if (JL_UART1->CON0 & BIT(5)) { if (uart1.rx_timeout > 10) { JL_UART1->OTCNT = (uart1.rx_timeout / 10) * (UART_OT_CLK / 10) / 10; } else { JL_UART1->OTCNT = uart1.rx_timeout * UART_OT_CLK / 1000; } } JL_UART1->CON0 |= BIT(13) | BIT(12) | BIT(10) | BIT(0); } /** * @brief ut1使能 */ static void UT1_open(u32 baud, u32 is_9bit, void *cbuf, u32 cbuf_size, u32 rx_cnt, u32 ot) { JL_UART1->CON0 = BIT(13) | BIT(12) | BIT(10); UT_OSSemCreate(&uart1.sem_rx, 0); UT_OSSemCreate(&uart1.sem_tx, 0); request_irq(IRQ_UART1_IDX, 3, UT1_isr_fun, 0); if (cbuf) { uart1.kfifo.buffer = cbuf; uart1.kfifo.buf_size = cbuf_size; uart1.kfifo.buf_in = 0; uart1.kfifo.buf_out = 0; uart1.frame_length = rx_cnt; uart1.rx_timeout = ot; JL_UART1->RXSADR = (u32)uart1.kfifo.buffer; JL_UART1->RXEADR = (u32)(uart1.kfifo.buffer + uart1.kfifo.buf_size); JL_UART1->RXCNT = uart1.frame_length; JL_UART1->CON0 |= BIT(6) | BIT(5) | BIT(3); } if (is_9bit) { JL_UART1->CON0 |= BIT(1); } else { JL_UART1->CON0 &= ~BIT(1); } UT1_set_baud(baud); } /** * @brief ut1关闭,注销 */ static void UT1_close(void) { UT_OSSemClose(&uart1.sem_rx); UT_OSSemClose(&uart1.sem_tx); irq_disable(IRQ_UART1_IDX); JL_UART1->CON0 = BIT(13) | BIT(12) | BIT(10); } /** * @brief ut2发送一个byte * * @param a 要发送的字节 */ static void UT2_putbyte(char a) { if (JL_UART2->CON0 & BIT(0)) { JL_UART2->BUF = a; __asm__ volatile("csync"); while ((JL_UART2->CON0 & BIT(15)) == 0); JL_UART2->CON0 |= BIT(13); } } /** * @brief ut2接收一个byte * * @param buf 字节存放地址 * @param timeout 接收超时时间,单位1ms 10ms¥;返回1:接收成功 */ static u8 UT2_getbyte(u8 *buf, u32 timeout) { u32 _timeout, _t_sleep; timeout = ut_msecs_to_jiffies(timeout); if (JL_UART2->CON0 & BIT(6)) { if (!kfifo_length(&uart2.kfifo)) { UT_OSSemPend(&uart2.sem_rx, timeout); } UT_OSSemSet(&uart2.sem_rx, 0); return kfifo_get(&uart2.kfifo, buf, 1); } else { _timeout = timeout + ut_get_jiffies(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); while (!(JL_UART2->CON0 & BIT(14))) { if (timeout && time_before(_timeout, ut_get_jiffies())) { return 0; } if (time_before(_t_sleep, ut_get_jiffies())) { ut_sleep(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); } } *buf = JL_UART2->BUF; JL_UART2->CON0 |= BIT(12); __asm__ volatile("csync"); //make RX_PND_CLR taking effect } return 1; } /** * @brief ut2中断函数 */ SET_INTERRUPT static void UT2_isr_fun(void) { u32 rx_len = 0; if ((JL_UART2->CON0 & BIT(2)) && (JL_UART2->CON0 & BIT(15))) { JL_UART2->CON0 |= BIT(13); UT_OSSemPost(&uart2.sem_tx); if (uart2.isr_cbfun) { uart2.isr_cbfun(&uart2, UT_TX); } } if ((JL_UART2->CON0 & BIT(3)) && (JL_UART2->CON0 & BIT(14))) { JL_UART2->CON0 |= BIT(12); //清RX PND uart2.kfifo.buf_in += uart2.frame_length; //每满32字节则产生一次中断 UT_OSSemPost(&uart2.sem_rx); if (uart2.isr_cbfun) { uart2.isr_cbfun(&uart2, UT_RX); } } if ((JL_UART2->CON0 & BIT(5)) && (JL_UART2->CON0 & BIT(11))) { //OTCNT PND JL_UART2->CON0 |= BIT(7); //DMA模式 JL_UART2->CON0 |= BIT(10); //清OTCNT PND JL_UART2->CON0 |= BIT(12); //清RX PND(这里的顺序不能改变,这里要清一次) rx_len = JL_UART2->HRXCNT; //读当前串口接收数据的个数 if (rx_len) { uart2.kfifo.buf_in += rx_len; /* printf("%s() %d\n", __func__, __LINE__); */ UT_OSSemPost(&uart2.sem_rx); if (uart2.isr_cbfun) { uart2.isr_cbfun(&uart2, UT_RX_OT); } } } } /** * @brief ut2接收字符串 * * @param buf 字符串存放首地址 * @param len 预接收长度 * @param timeout 接收超时时间,单位1ms * @return 返回实际接收的长度 */ static u32 UT2_read_buf(u8 *buf, u32 len, u32 timeout) { u32 i; u32 _timeout, _t_sleep; if (len == 0) { return 0; } timeout = ut_msecs_to_jiffies(timeout); if (JL_UART2->CON0 & BIT(6)) { if (!kfifo_length(&uart2.kfifo)) { UT_OSSemPend(&uart2.sem_rx, timeout); } UT_OSSemSet(&uart2.sem_rx, 0); return kfifo_get(&uart2.kfifo, buf, len); } else { _timeout = timeout + ut_get_jiffies(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); for (i = 0; i < len; i++) { while (!(JL_UART2->CON0 & BIT(14))) { if (timeout && time_before(_timeout, ut_get_jiffies())) { return i; } if (time_before(_t_sleep, ut_get_jiffies())) { ut_sleep(); _t_sleep = ut_msecs_to_jiffies(10) + ut_get_jiffies(); } } *(buf + i) = JL_UART2->BUF; JL_UART2->CON0 |= BIT(12); __asm__ volatile("csync"); //make RX_PND_CLR taking effect } } return len; } /** * @brief ut2发送字符串 * * @param buf 字符串首地址 * @param len 发送的字符串长度 * @param timeout 发送超时时间,单位10ms */ static void UT2_write_buf(const u8 *buf, u32 len) { u32 i; if (len == 0) { return; } if (CONFIG_UART2_ENABLE_TX_DMA) { UT_OSSemSet(&uart2.sem_tx, 0); JL_UART2->CON0 |= BIT(13); JL_UART2->CON0 |= BIT(2); JL_UART2->TXADR = (u32)buf; JL_UART2->TXCNT = len; UT_OSSemPend(&uart2.sem_tx, 0); JL_UART2->CON0 &= ~BIT(2); } else { for (i = 0; i < len; i ++) { UT2_putbyte(*(buf + i)); } } } /** * @brief ut2配置波特率 * * @param baud 波特率值 */ static void UT2_set_baud(u32 baud) { JL_UART2->CON0 &= ~BIT(0); JL_UART2->CON0 |= BIT(13) | BIT(12) | BIT(10); JL_UART2->BAUD = ((UART_CLK + baud / 2) / baud) / 4 - 1; if (JL_UART2->CON0 & BIT(5)) { if (uart2.rx_timeout > 10) { JL_UART2->OTCNT = (uart2.rx_timeout / 10) * (UART_OT_CLK / 10) / 10; } else { JL_UART2->OTCNT = uart2.rx_timeout * UART_OT_CLK / 1000; } } JL_UART2->CON0 |= BIT(13) | BIT(12) | BIT(10) | BIT(0); } /** * @brief ut2使能 */ static void UT2_open(u32 baud, u32 is_9bit, void *cbuf, u32 cbuf_size, u32 rx_cnt, u32 ot) { JL_UART2->CON0 = BIT(13) | BIT(12) | BIT(10); UT_OSSemCreate(&uart2.sem_rx, 0); UT_OSSemCreate(&uart2.sem_tx, 0); request_irq(IRQ_UART2_IDX, 3, UT2_isr_fun, 0); if (cbuf) { uart2.kfifo.buffer = cbuf; uart2.kfifo.buf_size = cbuf_size; uart2.kfifo.buf_in = 0; uart2.kfifo.buf_out = 0; uart2.frame_length = rx_cnt; uart2.rx_timeout = ot; JL_UART2->RXSADR = (u32)uart2.kfifo.buffer; JL_UART2->RXEADR = (u32)(uart2.kfifo.buffer + uart2.kfifo.buf_size); JL_UART2->RXCNT = uart2.frame_length; JL_UART2->CON0 |= BIT(6) | BIT(5) | BIT(3); } if (is_9bit) { JL_UART2->CON0 |= BIT(1); } else { JL_UART2->CON0 &= ~BIT(1); } UT2_set_baud(baud); } /** * @brief ut2关闭,注销 */ static void UT2_close(void) { UT_OSSemClose(&uart2.sem_rx); UT_OSSemClose(&uart2.sem_tx); irq_disable(IRQ_UART2_IDX); JL_UART2->CON0 = BIT(13) | BIT(12) | BIT(10); } static u32 uart_is_idle(u32 ut_num) { switch (ut_num) { case 0 : return !(JL_UART0->CON0 & BIT(0)); case 1 : return !(JL_UART1->CON0 & BIT(0)); case 2: return !(JL_UART2->CON0 & BIT(0)); default : break; } return -1; } /**ut硬件集成引脚名称字符串,上下对应为一对*/ /* static char *ut_tx_pin[] = {"PA05", "PB07", "PA07", "reserved", "PB05", "reserved", "PA01", "USBDP", "PA03", "reserved", "reserved", "PA09"}; */ /* static char *ut_rx_pin[] = {"PA06", "PB08", "PA08", "reserved", "PB06", "reserved", "PA02", "USBDM", "PA04", "reserved", "reserved", "PA10"}; */ static u8 ut_tx_pin[] = { IO_PORTA_05, IO_PORTB_00, IO_PORTB_05, IO_PORTC_03, //UT0_TX IO_PORTB_06, IO_PORTC_01, IO_PORTA_00, IO_PORT_DP, //UT1_TX IO_PORTA_03, IO_PORTB_02, IO_PORTB_04, IO_PORTC_04, //UT2_TX }; static u8 ut_rx_pin[] = { IO_PORTA_06, IO_PORTB_01, IO_PORTB_05, IO_PORTC_03, //UT0_RX IO_PORTB_07, IO_PORTC_02, IO_PORTA_01, IO_PORT_DM, //UT1_RX IO_PORTA_04, IO_PORTB_03, IO_PORTB_04, IO_PORTC_05, //UT2_RX }; /** * @brief ut模块初始化函数,供外部调用 * * @param arg 传入uart_argment型结构体指针 * @return 返回uart_bus_t型结构体指针 */ __attribute__((noinline)) const uart_bus_t *uart_dev_open(const struct uart_platform_data_t *arg) { u8 i; u8 ut_num; u8 CHx_UTx_TX; uart_bus_t *ut = NULL; u32 ut_ch = -1; u8 gpio_input_channle_flag = 0; for (i = 0; i < 12; i++) { if ((arg->tx_pin == ut_tx_pin[i]) || ((arg->tx_pin == (u8) - 1) && (arg->rx_pin == ut_rx_pin[i]))) { ut_num = i / 4; if (uart_is_idle(ut_num)) { ut_ch = i % 4; if ((arg->rx_pin != ut_rx_pin[i]) && (arg->rx_pin != (u8) - 1)) { gpio_input_channle_flag = 1; } break; } } } if (ut_ch == -1) { if (uart_is_idle(0)) { ut_num = 0; CHx_UTx_TX = CH0_UT0_TX; } else if (uart_is_idle(1)) { ut_num = 1; CHx_UTx_TX = CH1_UT1_TX; } else if (uart_is_idle(2)) { ut_num = 2; CHx_UTx_TX = CH2_UT2_TX; } else { return NULL; } } if (arg->rx_cbuf) { if ((arg->rx_cbuf_size == 0) || (arg->rx_cbuf_size & (arg->rx_cbuf_size - 1))) { return NULL; } } if (CONFIG_UART0_ENABLE && ut_num == 0) { gpio_set_uart0(ut_ch); uart0.argv = arg->argv; uart0.isr_cbfun = arg->isr_cbfun; uart0.putbyte = UT0_putbyte; uart0.getbyte = UT0_getbyte; uart0.read = UT0_read_buf; uart0.write = UT0_write_buf; uart0.set_baud = UT0_set_baud; UT0_open(arg->baud, arg->is_9bit, arg->rx_cbuf, arg->rx_cbuf_size, arg->frame_length, arg->rx_timeout); ut = &uart0; } else if (CONFIG_UART1_ENABLE && ut_num == 1) { gpio_set_uart1(ut_ch); uart1.argv = arg->argv; uart1.isr_cbfun = arg->isr_cbfun; uart1.putbyte = UT1_putbyte; uart1.getbyte = UT1_getbyte; uart1.read = UT1_read_buf; uart1.write = UT1_write_buf; uart1.set_baud = UT1_set_baud; UT1_open(arg->baud, arg->is_9bit, arg->rx_cbuf, arg->rx_cbuf_size, arg->frame_length, arg->rx_timeout); ut = &uart1; } else if (CONFIG_UART2_ENABLE && ut_num == 2) { gpio_set_uart2(ut_ch); uart2.argv = arg->argv; uart2.isr_cbfun = arg->isr_cbfun; uart2.putbyte = UT2_putbyte; uart2.getbyte = UT2_getbyte; uart2.read = UT2_read_buf; uart2.write = UT2_write_buf; uart2.set_baud = UT2_set_baud; UT2_open(arg->baud, arg->is_9bit, arg->rx_cbuf, arg->rx_cbuf_size, arg->frame_length, arg->rx_timeout); ut = &uart2; } else { return NULL; } if (ut_ch == -1) { if (arg->rx_pin != (u8) - 1) { gpio_uart_rx_input(arg->rx_pin, ut_num, ut_num); } if (arg->tx_pin != (u8) - 1) { gpio_output_channle(arg->tx_pin, CHx_UTx_TX); } } if (gpio_input_channle_flag) { gpio_uart_rx_input(arg->rx_pin, ut_num, ut_num); } return ut; } u32 uart_dev_close(uart_bus_t *ut) { UT_OSSemClose(&ut->sem_rx); UT_OSSemClose(&ut->sem_tx); if (&uart0 == ut) { UT0_close(); return gpio_close_uart0(); } else if (&uart1 == ut) { UT1_close(); return gpio_close_uart1(); } else { UT2_close(); return gpio_close_uart2(); } return 0; } void uart_disable_for_ota() { JL_UART0->CON0 = BIT(13) | BIT(12) | BIT(10); JL_UART1->CON0 = BIT(13) | BIT(12) | BIT(10); JL_UART2->CON0 = BIT(13) | BIT(12) | BIT(10); } /* REGISTER_UPDATE_TARGET(uart_update_target) = { */ /* .name = "uart", */ /* .driver_close = uart_disable_for_ota, */ /* }; */